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The influence of the vessel shape, the initial conditions, and the vertical temperature gradient on dynamics
and amount of disorder in convective patterns evolving in Be´nard-Marangoni instability have been analyzed by
using statistical tools, namely the density of defects, a disorder function, the order-disorder~m,s! diagram
introduced from the minimal spanning tree approach by Dussertet al., @Phys. Rev. B34, 3528~1986!# and the
entropy function recently defined by Loeffler~unpublished!. Pattern disorder is studied for transient and steady
states. Experimental results show that the disorder in the hexagonal patterns of Be´nard-Marangoni convec-
tion ~i! is minimized in a hexagonal vessel and~ii ! can be described as a Gaussian noise superimposed on a
perfect array of hexagonal cells. Starting from imposed arrays, both hexagonal and nonhexagonal, with a
wavelength different from the one that is naturally selected, the final state is independent of initial conditions.
Disorder increases with the distance from the threshold. Depending on the Prandtl number, different behaviors
of the patterns are observed.@S1063-651X~96!08210-4#

PACS number~s!: 02.50.2r, 05.45.1b, 47.54.1r, 64.60.Cn

I. INTRODUCTION

The spatiotemporal behavior of spatially extended, dissi-
pative systems with significant fluctuations in both space and
time has been intensively studied in recent years@1#. An
important problem in the study of these complex systems is
that of finding suitable methods for their analysis. Statistical
rather than deterministic methods have often been used for
experimental studies@2–5#.

A prototype of these complex systems is given by the
Rayleigh-Bénard problem. In this instability, a pattern of
rolls develops, as seen in experiments and in weakly nonlin-
ear analyses. Irregularities are generally present in these pat-
terns, including dislocationlike defects and orientational dis-
order @6#. These complicated patterns may be characterized
by a two-dimensional horizontal wave-vector field that, from
the theoretical point of view, can be obtained from an am-
plitude equation@7#.

In the Bénard-Marangoni~BM! case, a pattern of hexa-
gons is the most stable structure in usual situations@8#. Such
patterns often exhibit some topological defects that are
mainly pentagon-heptagon pairs and aggregates of irregular
polygons @9#. It is noteworthy that these defects are also
observed in different natural hexagonal structures; for ex-
ample, in honeycombs, crystals, liquid crystals, or interfacial
patterns during solidification@10#. It is widely recognized
that simple, regular, and symmetric patterns are exceptional
in convection experiments@11#.

To our knowledge, in the scarce theoretical analysis com-
pleted up to now in BM convection, the dynamics of these
irregular patterns have not been analyzed. Until now, only
experimental studies exist@11–13# in which the formation
and evolution of defects~mutual transformation, annihila-
tion! in hexagonal patterns are described. As a complete
theory of defect dynamics is still lacking, it has proven use-
ful to use the analogy between these patterns and monolay-
ered materials in two dimensions@14#. Within this frame-

work, Occelli et al. @15# have proposed a quantitative
description of spatial disorder using a radial correlation func-
tion and an orientation correlation function, theoretical tools
that are used to describe melting in two-dimensional 2D hex-
agonal lattices, i.e., structures at the atomic level. Although
similarities between 2D structures and BM patterns exist, it
must be noted that the differences are very stringent. The
main ones are that 2D layered structures are static, whereas
convective patterns are a purely dynamical creation and
formed by convective cells whose number is not conserved;
i.e., cells can be created or annihilated~the total number of
cells in the pattern suffers small fluctuations even in
‘‘steady’’ states!.

The question of disorder in cellular patterns, which plays
an essential role in the apparition of turbulence and in the
transition to chaos@16#, is linked to the fundamental problem
of wavelength selection@17,18#. Is selection weak or sharp?
Do preferred patterns exist or not? These are central issues in
pattern-forming instabilities@1#. There are several ways to
quantify disorder in patterns, which all depend on the defi-
nition of disorder itself. The easy and obvious way is to
identify, classify, and count the defects, which are simply
defined as the cells whose number of sides differs from six. It
follows that the density of defects, i.e., the ratio of the num-
ber of defects to the total number of cells, is one major
measure of disorder. Nevertheless, it is a global parameter
that does not take into account the pattern distortion. Indeed,
in particular, in small vessels, an irregular pattern can be
observed only due to the presence of irregular hexagons; in
that case the density of defects is zero and yet the pattern is
not regular. To take into account the whole pattern distortion,
a disorder functionFd has been introduced@11#.

We have proposed@19# to use an alternative and more
informative method to study the disorder in a BM pattern,
namely the minimal spanning tree MST approach. This ap-
proach was introduced by Dussertet al. @20# to study the
organization in a thin film of aggregated lithium deposited on
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a dielectric substance. It was then used by Billiaet al. @21# to
carry out the statistical analysis of the topological defects
and disorder that occur in directional solidification of cellular
and dendritic arrays resulting from the morphological insta-
bility of the planar solid-liquid interface.

The aim of this work is to use statistical tools to analyze
the effects of external parameters~vessel shape, initial con-
ditions, vertical temperature gradient, Prandtl number~Pr!,
etc.! on the amount and on the dynamics of disorder in BM
patterns. The experimental procedure is described in Sec. II.
Section III is devoted to the description of the statistical
tools; results are given and discussed in Sec. IV; and, finally,
major conclusions are gathered in Sec. V.

II. EXPERIMENTAL PROCEDURE

The experimental setup consists of a thin~4.3-mm! hori-
zontal layer of silicon oil, Rhodorsil 47V50 or 47V100~cor-
responding respectively to Pr15440 and Pr25880 at 25 °C!,
contained in a vessel with a flat copper bottom~in which an
electric resistance is embedded to provide a uniform tem-
perature! and lateral walls made of Plexiglass, which has
about the same thermal conductivity as the silicon oil. The
vessel, which limits laterally the part of the layer under
study, is surrounded by an outer guard ring of the same oil.
The presence of this ring guarantees a quasiadiabaticity of
the sidewalls. The fluid was cooled from above through an
air layer. The air was bounded on top by a glass plate, which
is the bottom of a container in which water, coming from a
bath with regulated temperature, circulates in order to fix the
temperature of the glass plate and thereby the temperature on
top of the fluid. The essential features of the apparatus de-
scribed above are shown in Fig. 1. The temperatures at the
upper and lower surfaces are measured by means of thermo-
couples; the precision of the measurements is about 0.1 °C.
The liquid depth (d) is measured by means of micrometer
comparators with a precision of 0.01 mm. Flow visualization
is achieved by aluminum flakes suspended in the fluid. Pho-
tographs of the convective structure are taken at regular time
intervals during a long period. Then each photograph is digi-
tized. Appropriate filterings and scalings provide a binary
image, which is skeletonized later~Fig. 2!. Then, a suitable
software is written that allows us to obtain the values of the
relevant functions used in the statistical analysis.

The confinement is taken into account by means of a non-
dimensional parameter, the aspect ratioG5AA/d, which is
the ratio of a characteristic horizontal length of the fluid
layerAA, with A the surface area of the pattern, to the liquid
depth (d). Experiments have been performed in vessels with
G between 65 and 85, the first value corresponds to medium
final confinement@22#; Under these conditions, wall effects
exist but do not induce large extrinsic disorder, and mobility
of the structure is allowed as well as the existence of intrinsic
disorder.

The external parameter that controls the instability is the
vertical temperature differenceDT across the layer. Usually,
it is more useful to take a normalized parameter, the distance
to the threshold:

«5
R2Rc

Rc
5
M2Mc

Mc
, ~1!

where R and M are, respectively, the Rayleigh and Ma-
rangoni numbers, and the subscriptc stands for the corre-
sponding threshold value.

Three series of experiments were carried out.
~i! Experiments are performed in hexagonal (Vh), circular

(Vc), or in square (Vs) vessels, for the same physical param-
eters~distance to the threshold«50.05, aspect ratioG585,
Prandtl number Pr2!. First, the liquid is stirred up. Then, the
pattern self-organizes progressively until the final steady
state is reached. The characteristics of the structures obtained
in the various vessels will be compared in Sec. IV A. The
experimental results of series~i! convinced us to perform
two other series of experiments in a hexagonal vessel with
G565 corresponding to medium confinement.

~ii ! Thanks to the thermal marking technique described in
detail in @23#, regular arrays of cells can now be imposed as
initial conditions. In practice, hexagonal arrays with a cell
size equal to or larger than the ‘‘natural’’ one~i.e., the mean
size selected in the steady regime! as well as triangular or
square patterns are also initially forced. The self-organization
of the pattern from the initial almost perfect state up to the
final one~regular or disordered hexagonal structure! is stud-
ied. Experiments are performed in a hexagonal vessel with
G565 and for Pr25880 at 25 °C.

~iii ! Various experiments corresponding to various values
of « and to Pr1 and Pr2 are performed. Initially, there is no
imposed structure, but a complete mixing of the fluid by
stirring it up. Transient and steady regimes are studied.

FIG. 1. Schema of the experimental setup. 1, fluid layer; 2, air;
3, container; 4, vessel; 5, cooling container.

FIG. 2. Superposition of the skeletonized cellular array on the
picture of a cellular array in Be´nard-Marangoni convection.
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III. TOOLS USED FOR THE ANALYSIS
OF THE DISORDER

A. Density of defects

The density of defectsdd is defined as the ratio of number
of defectsnd ~cells whose number of sides differs from six!
to the total number of cells (N). As already underlined, de-
fects are chiefly pentagons~P5! and heptagons~P7! in steady
states, so that the density of defects is, in that condition, well
approximated by

dd5
n~P5!1n~P7!

N
. ~2!

B. Disorder function

The density of defects@11# and the orientation and trans-
lation correlation functions@15# are only useful when pat-
terns have a number of cells that are sufficient to make sta-
tistics reliable. In small vessels, with only a few cells, the
structure can display no defect and almost regular hexagons
~Fig. 1 in Ref.@11#!, whereas some distortion is still present
in the pattern. Therefore, in this situation, a quantitative mea-
sure of distortion is necessary to estimate the amount of pat-
tern disorder. For this, the following function has been pro-
posed@11#:

Fd5
1

2N
(
i51

N
1

ni
(
j51

ni U ln l i

l̄
U , ~3!

whereN is the number of cells in the pattern,ni is the coor-
dination number of thei th cell, l i j is the distance between the
center of thei th cell, and the center of itsj th neighbor, and
l̄ stands for the length between the centers of nearest-
neighbor cells averaged over the whole pattern~for this av-
erage, only hexagonal cells are taken into account!. Fd is an
average of the deviations of the distance between the cell
centers with respect to a completely regular pattern. In anal-
ogy with the entropy in regular honeycomb lattices@24#, a
logarithmic function has been chosen. The absolute value is
taken in order to have contributions that do not cancel each
other when the length between two centers is smaller or
larger than the mean value. These contributions are averaged
over the nearest neighbors and, finally, all these contribu-
tions are added over the whole pattern. Note that with this
function one can also account for distortions in patterns with
very few convective cells.

C. Minimal spanning tree „MST… approach
and entropy function

Some years ago, Dussertet al. @20# proposed a new
method based on principles of graph theory, the minimal
spanning tree~MST! approach, to analyze order and disorder
in a distribution of points. Data in the form of a set of points,
spread within a region of space, arise in many fields such as
astronomy, crystallography, solid-state physics, biology, etc.
It is often possible to consider the objects to be studied
~stars, elementary particles, aggregates, proteins, etc.! as
points and thus to treat such a data set as a distribution of
points on a surface.

Graph theory is well developed and applied in a large
variety of fields, so that the basic definitions can be easily
found elsewhere@25–27#. Therefore, the following presenta-
tion is reduced to a minimum. Let us recall that an edge-
weighted linear graph is composed of a set of nodes~the cell
centers for the case of cellular arrays! and a set of edges, an
edge being defined by a pair of cell centers, with a weight
assigned to each edge~the corresponding center-to-center
distance!. A MST is a connected graph without any closed
loop, which contains all the cell centers and for which the
sum of the edge weights is minimum. One starts from any
cell center and adds at each step the cell center that is closest
to the current tree~Fig. 3!. A MST can be constructed for
any distribution of points on a surface. It should be empha-
sized that the MST does not contain all the first-neighbor
distances but a selected subset ofN21 elements.

There are a few specific cases in which there exist some
edge lengths that are equal, so that, for a given distribution of
cell centers, the MST may not be unique and locally vary,
depending on the point that is selected to start its construc-
tion. Nevertheless, the important property is that all the pos-
sible MST’s are equivalent in the sense that the edge-length
histogram is unique. This fact legitimates the utilization of
parameters that are deduced from the statistical analysis of
that histogram to characterize the arrangement of the cell
centers. The most informative parameters are linked to the
moments of the distribution, the two major ones being the
average edge lengthm* and the standard deviations* . It
was shown by Dussertet al. @20,27# that it is most conve-
nient to normalizem* ands* as

m5
m*

A^a&

N21

N
, ~4!

s5
s*

A^a&

N21

N
, ~5!

whereN is the total number of cells and̂a& the averaged
cell area.

FIG. 3. The minimal spanning tree~MST! superimposed on the
2D Bénard-Maragoni array in a hexagonal vessel.
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By doing this, any distribution can be plotted in the~m,s!
plane~Fig. 4!, where it can be compared to any other two-
dimensional~2D! arrangement. Three lattices~triangularT,
squareS, and hexagonalH! among the 11 possible regular
mosaics~s50! and the random distribution~RD! are shown
in the ~m,s! plane. Dussertet al. @20,27# have progressively
randomized regular lattices by giving each point a new po-
sition deduced from its previous one using a Gaussian distri-
bution of displacements of increasing standard deviation.
The computed trajectories joiningS andH to RD are also
shown in Fig. 4. The areas marked I, II, and III on the dia-
gram of Fig. 4 respectively correspond to cluster structures
~small m, sÞ0! @26#, gradients of concentration~large s!,
and 2D quasiperiodic tilings~largem, sÞ0! @28#. It follows
that by construction of the MST, normalizing and plotting in
the ~m,s! plane, one is able to determine the underlying ar-
rangement of the 2D cellular arrays, i.e., to elucidate order
behind disorder, and measure disorder, particularly when
representative points fall on computed lines.

The edge-length histogram contains somewhat more sta-
tistical information than the~m,s! couple, so that it is tempt-
ing to directly use it. One might think it useful to also take
into account the complementary information that can be ex-
tracted from the MST by considering the histogram of
angles, the angles being those made by the MST edges with
respect to an arbitrary direction@27#. Yet the histogram of
angles is not unique when there are several possible MST’s,
so that it has to be discarded when seeking some thermody-
namic function enabling a sound hierarchy in the patterns.
Based on the edge-length histogram, an entropy function
S~1! has been recently introduced@29#:

S~1!52(
i
p~ l i !ln@p~ l i !#, ~6!

wherep( l i) is the proportion of edges with a length in the
class~l i6D1!.

IV. RESULTS AND DISCUSSION

A. Influence of vessel shape on the patterns

The influence of vessel shape on the structure of BM con-
vection was pointed out by Be´nard himself as early as 1901.
The sidewalls act on the structure, especially for small ves-
sels, by the existence of a meniscus that locally modifies the
depth layer and by boundary conditions on the velocity and
on the temperature~or the heat flux!. The most striking con-
sequence of the wall presence is that the cell edges in contact
with the walls are perpendicular to them in the steady re-
gime. It is obvious that the smaller the vessel the larger the
influence of sidewalls on the whole structure.

From a general point of view, in Rayleigh-Be´nard con-
vection, the wave-number selection depends on boundary
conditions @30#. One should be reminded of papers by
Pomeau and co-workers@17,31,32# and by Davis@33,34# in
which it is specified that when the aspect ratio increases, the
number of permitted modes also increases due to the weak-
ening of the strength of the finite-size effect. Also, in BM
patterns, the condition of orthogonality to the sidewalls of
convective-cell sides in contact can be satisfied only in hex-
agonal and equilateral triangular vessels. Indeed, in a com-
patible vessel, this condition of orthogonality can be satisfied
from a geometrical point of view. The pattern is composed of
regular hexagons in the central part and of rows of pentagons
on the periphery. Experiments show that these outer cells are
stable; they do not induce any disorder in the pattern. All
other containers, such as square, rectangular, pentagonal, cir-
cular, ring or crescent-shaped vessels, are geometrically in-
compatible with a perfect convective pattern@11–13#. In
these vessels, some distortion of the pattern with the con-
comitant presence of topological defects is necessary to con-
ciliate the various directions imposed by the walls. For in-
stance, relying on the space-filling argument, Rivieret al.

FIG. 4. The~m,s! diagram. m, normalized averaged length;s,
normalized standard deviation of the edge-length histogram. The
three major areas~I, II, and III! and three typical perfect mosaics~T,
triangular; S, square; and H, hexagonal! are shown. RD corresponds
to the computed random distribution. Computed curves joining RD
to S and to H are also visible. Inset shows the representative
points of whole patterns and patterns without peripheral cells for
various arrays in various vessels.Vh , hexagonal vessel;Vc , circular
vessel;Vs , square vessel.G585, «50.05.

FIG. 5. Histograms of angles of the minimal spanning tree:~a!
hexagonal~b! circular, and~c! square vessels~without peripheral
cells!.
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@35# showed theoretically that a hexagonal arrangement in a
circular vessel must contain at least six positive disclinations
@36# or pentagonal cells in the midst of the array.

In Fig. 5, the histograms of angles of the MST corre-
sponding to the various vessels are displayed. The reference
direction is horizontal, i.e., parallel to two vessel walls inVh
or in Vs . It can be seen that the characteristic directions of
the hexagonal pattern oriented to each other by 60° are
clearly exhibited. The angles are obviously 0°,160°, and
260° in Vh , in conformity with the orthogonality condition
for marginal cells. On the other hand, the orientation of the
pattern inVc is random. This is a direct consequence of the
extension of the Curie principle to dynamical systems
@37#: one realization breaks circular symmetry but the av-
erage over many experiments, or time averaging, should re-
store it, which was verified in other symmetry-breaking in-
stabilities@38,39#. In Vs , angles at690° are visible. This is
due to the fact that inVs short distances between cell centers,
which are retained in the construction of the MST, are rather
perpendicular to the reference direction for the case shown,
although the two directions imposed by the square walls
have the same probability. Indeed, we performed other ex-
periments and we remarked that short edges can be parallel
or perpendicular to the reference direction.

Experimental results fordd , Fd , andS~1! in steady states
for series~i! are listed in Table I; the total number of cells is
about 570 when cells in contact with the vessel walls are
taken into account and about 490 when they are excluded
~vessels have the same aspect ratio but the total numbers of
cells are not strictly equal!. It can be seen that the variation
of the density of defectsdd , minimum for the hexagonal
vessel (Vh), and maximum for the square vessel (Vs) is in
conformity with the topological considerations in the preced-
ing paragraph. In natural convective patterns, some defects
that have a dynamic origin, are always present in large hex-
agonal vessels, although they are, in principle, compatible.
Even if the densitydd is greater inVc than inVh , the strains
induced by cylindrical symmetry seem to be uniformly dis-
tributed over the pattern as the distortion in the lattice, mea-
sured byFd , is small. Indeed, taking these two effects to-
gether~more defects but fewer strains from walls; there are
no angles! could explain whyFd is about the same forVc
and forVh . ForVs , Fd is significantly higher, in agreement
with higher incompatible symmetry. The entropy function
S~1! inverts the above classification betweenVc andVs . In-
deed, Table I again shows thatVh is the most adapted vessel
but the shortest edge lengths are found to be more disordered
in Vc than inVs , the effect being clearer when outer cells are
excluded.

Figure 4 shows that in the~m,s! plane disorder increases
according to the sequenceVh ,Vc ,Vs . When peripheral cells

are not taken into account, the three representative points fall
on the line H-RD, so that the total~topological1stretching!
disorder can be described as a Gaussian noise perturbing an
ideal hexagonal planform. When peripheral cells are taken
into account, representative points are above the line H-RD,
which means that these cells, truncated by wall constraints,
belong to another category. Actually, the outer cells intro-
duce shorter edge lengths that are preferred in the construc-
tion of the MST. The detrimental consequence is that the
statistical analysis is then biased when the aim is to discover
characteristics representative of planforms in an extended
system.

B. Influence of initial conditions on pattern dynamics
and order-disorder transition

Experiments of series~ii ! and~iii ! have been performed in
a hexagonal vessel because series~i! showed that this shape
induced a minimum extrinsic disorder. The aspect ratio
G565 has been chosen to induce moderate wall effects on
the pattern@22#. Indeed, if the aspect ratio is small, the pat-
tern has no structural defects, even for moderate«. On the
contrary, if it is large, the layer can be considered as infi-
nitely extended in the horizontal directions and the vessel has
no larger influence. The valueG565 provides stabilized wall
effects limited to a few cell rows~1 to 3! near the walls and
allows the structure to evolve freely in its central part.

FIG. 6. Initial and final patterns of series 2.G565, «54.5. ~a!
Initial pattern of case 2.1;~b! initial pattern of case 2.3;~c! initial
pattern of case 2.4; and~d! final pattern of case 2.4, statistically
equivalent to final patterns of cases 2.2 and 2.3.

TABLE I. Values ofdd , Fd andS~1! for various vessels.G585, «50.05.

Vessel

All cells considered Peripheral cells excluded

dd ~%! Fd S~1! dd ~%! Fd S~1!

Hexagon 0.15 0.052 3.23 0.033 0.052 2.97
Cylinder 0.16 0.051 3.33 0.086 0.051 3.25
Square 0.18 0.066 3.26 0.092 0.067 2.98
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It is interesting to investigate the influence of initial con-
ditions on the characteristics of the final cellular arrays in
order to go deeper into an understanding of the mechanisms
of wavelength selection that may arise from the dynamics of
the pattern itself. This point is emphasized by Cross and
Hohenberg in their review of pattern formation outside of
equilibrium @1#. In particular, they discuss the meaning of
selection, which leads them to introduce the notion of ‘‘pre-
ferred’’ state for systems for which there is no evidence of an
ordering principle. Namely, one state is ‘‘preferred’’ if it has
a larger basin of attraction fortypical initial conditions, or if
it evolves from an initial condition where different states
coexist side by side. These authors conclude that such con-
siderations naturally direct the attention to the specific way
in which the control parameters reach their final values and
to the dynamics leading to the final steady state. In that goal
we performed series-~ii ! experiments with various imposed
initial structures~G565 and«54.5!.

Case 2.1: regular hexagonal pattern with wavelength
l i'l f ~i , initial; f , final!,

Case 2.2: regular hexagonal pattern with wavelength
l i.l f ,

Case 2.3: triangular pattern,
Case 2.4: square pattern.

For experiments 2.3 and 2.4, imposed cells have areas very
close to that of hexagonal cells imposed in case 2.1.

Figure 6 shows structures very close to the prepared pat-
terns imposed as initial conditions and a final one. It can be
noticed that hexagonal array@Fig. 6~a!# is regular because the
honeycomb is the natural structure and the imposed wave-
length is very close to the naturally selected mean value. The
triangular @Fig. 6~b!# and the square@Fig. 6~c!# patterns al-
ready show some defects~with a different meaning than be-
fore, i.e., cells with a number of sides different respectively
from 3 and 4! because the imposed structures are not at all
natural and the employed thermal technique displays some
small imperfections due to misalignment of some cold
needles@23#. We remark that many peripheral cells rapidly
become perpendicular to walls for triangular and square im-
posed patterns. The final array corresponding to the steady

FIG. 7. Evolution of the number of polygonsPn as a function of time@series~ii !#. G565, «54.5: ~a! initial regular hexagonal pattern
with wavelengthl i'l f ~i , initial; f final!, ~case 2.1!; ~b! initial regular hexagonal pattern with wavelengthl i.l f ~case 2.2!; ~c! initial
triangular pattern~case 2.3!; and~d! initial square pattern~case 2.4!. When several symbols are superimposed some of them are hidden; the
lines serve as guides to the eye.
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regime of experiment 2.1, which resembles Fig. 6~a!, is al-
most a regular hexagonal array, whereas the final arrays of
experiments 2.2 and 2.3 are disordered structures statistically
equivalent to that of experiment 2.4@Fig. 6~d!#, as will be
shown in the following.

Carried out by initially imposing a honeycomb with a
wavelengthadapted~very close to the natural one! to the
level of instability, experiment 2.1 is critical. Apart from the
cells close to the container walls@Fig. 6~a!#, it showed no
array dynamics during a long period~about 15 days!. It fol-
lowed that the cellular array remained quasiregular with very
few topological defects and disorder that could not even be
sustained when appearing in the core of the pattern. Such an
experiment indicates that, in BM convection, ‘‘limited
dynamics5limited disorder,’’ which leads one to conjecture
that ‘‘no dynamics5no disorder’’ would be found if stretch-
ing effects were suppressed by using a hexagonal container
commensurable with the imposed honeycomb spacing. We
plan to ascertain this point in a forthcoming study.

Cells on the periphery being excluded, the evolution of
the number of polygonsPn ~n53, . . . ,8! for experiment 2.1
is shown in Fig. 7~a!. The numberP6 of six-sided cells is
almost constant, or in other words, the number of topological
defects remains nearly zero, so that it can be considered that
the dynamics of pattern formation has been reduced enough
to make ‘‘no disorder’’ achievable in thedd case. Figure
7~b!, devoted to the evolution of an initially hexagonal pat-
tern with li.l f ~case 2.2!, confirms the general trend: a
disordered pattern contains onlyP5 andP7 as defects in the
steady regime. During the partial destruction of the regular
pattern, transitoryP4 andP8 cells can appear. This is due to
the large size of the imposed cells; there are divisions ofP6
cells and resulting unstable cells coalesce. When a triangular
pattern is imposed as in case 2.3@Fig. 7~c!#, triangular cells
disappear rapidly. After about 12 min there does not remain
anyP3 cell visible to the naked eye. At the same time theP4
are created, theP5, P6, andP7 are also created. The rear-
rangement of the intermediate pattern, made ofP4, P5, P6,
and P7, leads to the usual pattern withP6, P5, and P7.
Figure 7~d! exhibits the same behavior when square cells are
imposed. For the last three cases, the imposed patterns have
totally disappeared 15 min after starting the experiment, i.e.,

23104 times the viscous diffusion timetvisc ~50.043 sec for
Pr25880 at 25 °C! and 24 times the thermal diffusion time
tth ~537.9 sec for Pr2!.

In Fig. 8, we give the evolution with time of the represen-
tative points in the~m,s! plane for the various cases of series
~ii !. The representative points of initial arrays of cases 2.1
~point 1!, 2.2 ~point 18! are, as expected, very close toH as
they correspond to almost perfect hexagonal patterns. For
case 2.3, the array~point 19! is initially nearby T, which
locates the regular triangular structure. Similarly, for case 2.4
~point 1* ! the pattern starts close to the square mosaicS, on
the computed line S-RD. It is worth noticing that, in all
cases, there is a transient incursion into the adjacent region
above the line H-RD. Although it is made up of six-sided
cells ~dd'0!, the final stage for experiment 2.1~point 8! is
not a perfect honeycomb~m51.01 ands50.051 instead of
m51.075 ands50! but rather a distorted hexagonal pattern.
For an imposed hexagonal array larger than the natural one,
case 2.2, the transient regime presents a tendency to the re-
gion of square cells~points 28 and 38! that may reflect the
fact that, initially, the imposed size~point 18! is too large and
a division phase occurs. During this phase, there is a signifi-
cant number ofP4 defects@see Fig. 7~b!#, which is accom-
panied by a decrease ofm and an increase ofs. A first

FIG. 8. Evolution of cellular arrays with time in the~m,s! dia-
gram for series~ii !. G565, «54.5. When several symbols are su-
perimposed some of them are hidden; the lines serve as guides to
the eye.

FIG. 9. The minimal spanning tree~MST!: histograms of edge
angles.G565, «54.5. Initial patterns: ~a! case 2.1,~b! case 2.2,
~c! case 2.3, and~d! case 2.4. Final patterns:~e! case 2.1 and~f!
case 2.4 statistically equivalent to cases 2.2 and 2.3.
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period of array rearrangement follows during which disper-
sion, characterized bys, decreases~point 48!. As usual with
the MST construction, the increase ofm follows from the
lowering of the number of very small cells, which naturally
provide short edges. Moreover, during the first division
stage, the system probably creates more cells than necessary
so that small cell elimination occurs during the next period.
Then, the process of cell division is repeated, giving rise to
an oscillatory drift, in the sense of disorder, towards a qua-
siasymptotic pattern~point 88!. After about 275 h, the pattern
has self-reorganized into a hexagonal array more disordered
than in the experiment 2.1 with initial adapted spacing, as the
final point 88 ~m50.96 ands50.081! has moved towards
RD with respect to point 8. Experiments 2.3 and 2.4 evolve
rapidly towards statistically equivalent final states~points 99
and 6* !, comparable to that in experiment 2.2.

When, in Fig. 8, representative points fall on the same
computed trajectory to RD, e.g., H-RD, the absence of met-
rics in the~m,s! diagram can be overcome. Then, the global
distortion of the patterns can be measured by the amount of
Gaussian disorder introduced in the randomization process
~see Fig. 4 in Ref.@20#!. The standard deviation of the dis-
tribution of the shifts from the ideal positions equals 0.045
for the asymptotic state of experiment 2.1 and 0.078 for the
final state of experiment 2.2, which respectively correspond
to 9.6% and 16.6% of the value for a completely random
structure. Yet topological disorder is striking in Fig. 6~d!
~dd531%!, whereas it is not discernible in experiment 2.1. It
thus follows that the large effects, seen in the figures and
measured bydd , are produced by a small cause, which
means that disorder is a highly nonlinear function of the
cellular shifts that might explain why, by the MST method, it
remains possible to bring forward the underlying honeycomb
even at large distances from the onset of instability.

The histograms of angles for the initial states of series-~ii !
experiments are shown in Figs. 9~a!–9~d!. For all cases, the
imposed angles are very close to the theoretical values. The
final pattern keeps good orientational order for case 2.1@Fig.
9~e!#, whereas the other three initial arrays end in a similar
pattern with a weakly nonuniform distribution of angles;
only small and large peaks can be distinguished@Fig. 9~f!#.

The entropy functionS~1!, Fig. 10, shows that the final
state is reached after about 0.2 h~51.83104tvisc and 19tth!
for cases 2.2, 2.3, and 2.4, whereas it needs several hours for
the evolution of polygonsPn ~Fig. 7!. This difference can be
explained by noting thatS~1! nears its asymptotic value at
the time the three structures 2.2, 2.3, and 2.4 adopt a similar
aspect, with a majority of hexagons and essentially penta-
gons and heptagons as defects. Indeed, the appearance or
disappearance of a few pentagon-heptagon pairs modifies
strongly the density of defects but does not significantly af-
fect the entropy because these pairs have nearly the same
size and the same orientation as the two hexagons in a dis-
ordered lattice. Although the pattern in experiment 2.1 only
undergoes minor modifications, the final state is eventually
realized after 12 h, i.e., after about 106tvisc and 103tth . On
general grounds, there exist several contributions to entropy,
which possess different characteristic times. For case 2.1,
because all the outer cells make perpendicular contacts, the
wall contribution is zero, as is the case for the topological
defects~dd'0!. Therefore, only the stretching, which is dif-
ferent from zero as the initial hexagonal pattern is adapted
for wavelength but is not commensurable with the size of the
hexagonal container, determines the characteristic time of
the evolution of the array. Finally, it should be noticed that
the common entropy value of the final states of experiments
2.2, 2.3, and 2.4 is significantly higher than that of case 2.1.

C. Influence of « and Pr on patterns in steady regimes

We noted in Sec. IV B that a ‘‘statistical’’ final state is
reached after about 12 h~at maximum!. But from a general
point of view we must stress that the pattern is not stationary
and its characteristics fluctuate around mean values. These
fluctuations are a consequence of the cell dynamics; cells can
grow, evolve, and sometimes annihilate. These changes may
be responsible for strong fluctuations in the measures of dis-
order, such asdd , Fd , m, s, andS~1!. These fluctuations do
not behave monotonically; the variation of the amplitude is
large for dd~621%!, Fd~610%!, ands~8%! and small for
m~0.8%! andS~1!~61.3%!.

In this section, the disorder characteristics in a hexagonal
container ~G565! are studied for the stationary states of
series-~iii ! experiments. Figure 11 shows typical evolutions
with « for the two values of Pr. For all the statistical diag-
nostics used, the variation with« is linear for the low-
viscosity silicon oil, in the considered range of instability
@Figs. 11~a!, 11~c!, and 11~d!#. Only the variation ofdd is
linear at higher viscosity@Fig. 11~a!#, topological disorder at
high Pr being larger than that at low Pr. It follows from the
statistical analysis of array organization by the MST method
that the representative points at« about 10 fall in the~m,s!
plane near the trajectory H-RD joining the perfect hexagonal
array to the random distribution@Fig. 11~b!#. Yet, the influ-
ence of Pr is noticeable at lower values. For Pr1, the evolu-
tion of the representative point stays along the H-RD line
with a continuous enhancement of Gaussian disorder~m de-
creases ands increases!. For Pr2, there is, in the beginning,
some oscillatory behavior around the H-RD line. The dis-
similarity between the two fluids is furthermore stressed by
the different aspects ofFd and S~1!, which, for Pr2, both
reach an asymptotic value at higher« @Figs. 11~c! and 11~d!#.

FIG. 10. EntropyS( l ) versus time for arrays of series~ii !.
G565, «54.5. Peripheral cells are excluded from calculations.
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WhereasFd continuously goes to saturation, the variation of
edge-length entropyS~1! first goes through a maximum con-
comitant to the oscillation in the~m,s! diagram.

The origin of the differences between Pr1 and Pr2 has
probably to be sought in the larger viscous drag that occurs
at higher viscosity, which makes more nonlocal the adjust-
ments in the pattern. Such long-range effects are likely to
impede global ordering, as an improvement in some place
might destroy some farther area already organized. Such a
process would be a permanent source of disorder. It would
explain why, at low«, the histograms of angles reveal a
marked difference between Pr1 and Pr2, the disorientation
being already complete in the latter case@Fig. 12~b!#. This
observation is also true for the center-to-center distance his-
tograms whose standard deviations at«'1.8 are 0.052 and
0.146 for Pr1 and Pr2, respectively.

V. CONCLUSION

We have carried out a quantitative statistical analysis of
the influence of two critical external parameters, namely,
vessel geometry and initial conditions, on the array dynamics
and amount of disorder of Be´nard-Marangoni convective
patterns. Experimental results confirm that vessels with a
shape that favors hexagonal symmetry~hexagonal, cylindri-

cal! minimize disorder. The imposed regular hexagonal pat-
tern can survive only in a hexagonal vessel and only if the
imposed wavelength is equal to the natural one correspond-
ing to the Rayleigh number. In all other cases, the forced
planform does not remain stable and, from the various initial
states we have imposed, evolves to the same final disordered
structure. The superposition ‘‘cellular array5honeycomb
1Gaussian noise’’ is recovered. The result of the present
study, ‘‘limited dynamics5limited disorder,’’ which led us
to conjecture that ‘‘no dynamics5no disorder,’’ suggests

FIG. 11. Variation with the distance from the threshold« of disorder characteristics of series-~iii ! experiments. Peripheral cells are
excluded from calculations.~a! Density of defectsdd ; ~b! evolution in the~m,s! diagram, the values of« are 2.1, 3.4, 5.5, 7.4, 8.4, and 10.8
in order of increasing numbers for Pr1 and 1.5, 2.5, 3.6, 4.5, 5.1, 7.1, 8, and 10.3 for Pr2; ~c! disorder functionFd ; and~d! entropyS( l ). In
~b! the lines serve as guides to the eye.

FIG. 12. Histograms of MST angles for series~iii !. Peripheral
cells are excluded from calculations.~a! Pr1, «52.1; ~b! Pr2, «51.5.
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that this superposition actually is a generic feature, the physi-
cal origin of noise being the dynamics of pattern formation
and selection itself. The MST approach thus appears to be a
sound method for the study of disorder in 2D convective
patterns, providing qualitative and quantitative information
on array disorder, in particular to check if order is hidden
behind disorder.

Yet, conclusions remain limited by the fact that, except
when the experimental point coincides with some reference
arrangement or trajectory, a measure of the distances in the
~m,s! plane is up to now lacking. This gap might be filled by

introducing an appropriate entropy function. To our knowl-
edge, it is the first time that the edge-length entropyS~1! has
been checked in experiments. Results are in conformity with
thermodynamics and experience gotten from direct observa-
tion, so thatS( l ) looks very promising for establishing a
hierarchy of the BM patterns and others.

The main result from the investigation of the evolution of
the patterns with the distance from the threshold and the Pr
number of the fluid seems to be the role of viscous drag
effects, which, by long-range influence, feed disorder back
into the array.
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